similar resources
The Brunn-Minkowski Inequality
In 1978, Osserman [124] wrote an extensive survey on the isoperimetric inequality. The Brunn-Minkowski inequality can be proved in a page, yet quickly yields the classical isoperimetric inequality for important classes of subsets of Rn, and deserves to be better known. This guide explains the relationship between the Brunn-Minkowski inequality and other inequalities in geometry and analysis, an...
full textBrunn - Minkowski Inequality
– We present a one-dimensional version of the functional form of the geometric Brunn-Minkowski inequality in free (noncommutative) probability theory. The proof relies on matrix approximation as used recently by P. Biane and F. Hiai, D. Petz and Y. Ueda to establish free analogues of the logarithmic Sobolev and transportation cost inequalities for strictly convex potentials, that are recovered ...
full textThe Log-brunn-minkowski Inequality
For origin-symmetric convex bodies (i.e., the unit balls of finite dimensional Banach spaces) it is conjectured that there exist a family of inequalities each of which is stronger than the classical Brunn-Minkowski inequality and a family of inequalities each of which is stronger than the classical Minkowski mixed-volume inequality. It is shown that these two families of inequalities are “equiv...
full textStability Results for the Brunn-minkowski Inequality
The Brunn-Miknowski inequality gives a lower bound on the Lebesgue measure of a sumset in terms of the measures of the individual sets. This classical inequality in convex geometry was inspired by issues around the isoperimetric problem and was considered for a long time to belong to geometry, where its significance is widely recognized. However, it is by now clear that the Brunn-Miknowski ineq...
full textThe Brunn-minkowski Inequality: Work in Progress
According to the MathSciNet search engine, approximately 100 papers and books pertaining to the Brunn-Minkowski inequality have appeared since Das Gupta's 1980 article Brunn-Minkowski and its aftermath 56]. An attempt is made here to present an up-to-date survey.
full textMy Resources
Save resource for easier access later
Journal title:
bulletin of the iranian mathematical societyPublisher: iranian mathematical society (ims)
ISSN 1017-060X
volume 36
issue No. 2 2011
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023